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Electrostatic predictions of shapes and properties of 
Van der Waals molecules 

by A. D. BUCKINGHAM, P. W. FOWLER and A. J. STONE 
Department of Theoretical Chemistry, University Chemical Laboratory, 

Lensfield Road, Cambridge, CB2 lEW, England 

Thk application of long-range models to shapes and dipole moments of Van der 
Waals complexes is reviewed. A simple model incorporating electrostatic interac- 
tions through distributed point multipoles, and short-range repulsion through hard 
spheres, has wide predictive power for the shapes of hydrogen-bonded and other 
complexes. Successes and limitations of the model are discussed. Inclusion of a 
distributed polarizability allows semiquantitative prediction of dipole moments of 
complexes. 

1. Introduction 
This paper reviews the understanding of Van der Waals molecules that can be 

gained from the long-range theory of intermolecular forces. Our particular interest is in 
modelling the shapes and properties of hydrogen-bonded complexes formed by polar 
(or quadrupolar) monomers. 

In a Van der Waals molecule the monomer subunits retain to a large extent their 
separate identities, as shown by the geometrical structure and vibrational frequencies 
of the complex. It is natural, therefore, to describe the structure and bonding of weakly 
bound complexes in terms of the isolated monomers, treating the interaction as a 
perturbation. For large separations, there is a well established theory of intermolecular 
forces (Buckingham 1967,1978) leading to a partitioning of the interaction energy into 
distinct long-range contributions: electrostatic, induction and dispersion. At short 
range, overlap repulsion and charge transfer become significant. 

The electrostatic energy arises from the interaction of the two undistorted charge 
clouds; the induction (or polarization) energy arises from the distortion of each charge 
cloud in the field of the other; the dispersion energy comes from correlation between 
monomers of the quantum-mechanical fluctuations in electron positions. Overlap 
repulsion is caused by exchange effects and charge-cloud interpenetration. Charge- 
transfer energies come from donor-acceptor interaction between filled orbitals of one 
monomer and the virtual orbitals of the other. 

Perturbation theory based on a multipole expansion of the interaction Hamil- 
tonian may be used to express each long-range energy as a series in inverse powers of 
the separation, with expansion coefficients depending on the permanent moments 
(electrostatic), static polarizabilities (induction), and polarizabilities at imaginary 
frequencies (dispersion) of the monomers (Buckingham 1967, 1978). 

The expansions are strictly valid only in regions of negligible overlap. At shorter 
distances the unexpanded energy contributions may still be defined, and various 
schemes for decomposition of the interaction energy are in use (Morokuma 1971, 
Hayes and Stone 1983 a, b). Although the series expansions are in principle subject to 
exchange and overlap corrections, they may still provide a very good approximation to 
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108 A .  D.  Buckingham et al. 

the attractive intermolecular potential, even at the potential minimum. In ab initio SCF 
calculations on the Ne-HF complex (Fowler and Buckingham 1983) it was found that, 
after elimination of basis-set superposition effects, the long-range induction energy 
matched the interaction energy all the way in to the minimum near R(Ne . . . H) = 2.9 A. 
(Dispersion contributions are not present in an SCF calculation.) Similarly, a long- 
range expression fitted the interaction dipole moment of Ne . . . HF over the same range 
of distance. 

2. A model for geometries 
Morokuma-type decomposition of the SCF interaction energy for a variety of H- 

bonded dimers (Umeyama and Morokuma 1977, Kollman 1977 b) has shown that the 
electrostatic contribution is a large fraction of the binding energy; more importantly, it 
dominates the angular variation of the total energy. Calculations by Rendell et al. 
(1985) and Hurst et al. (1985) confirm this approximate cancellation of polarization and 
exchange repulsion. 

A model for the shape of the H-bonded and other dimers therefore needs to include 
the electrostatic interaction (to give an angular minimum) and a repulsive potential (to 
give a radial minimum). Such a model has been proposed (Buckingham and Fowler 
1983, 1985) and is discussed further in this article. 

The charge distribution of a molecule is represented by a set of point multipoles 
determined from a distributed multipole analysis (DMA) of an ab initio wavefunction 
(Stone 1981). Each atom carries a charge, a dipole and a quadrupole calculated by a 
procedure analogous to the usual Mulliken population analysis of the charge density. 
Combination of the point multipoles recovers the total molecular charge, dipole and 
quadrupole moments of the given wavefunction. 

The distributed nature of the multipoles is an important feature of the model. At 
large separations a single-centre multipole expansion of the electrostatic energy is 
adequate, where only the longest-range term involving the lowest-order non-vanishing 
moment is significant, e.g. for a pair of HF molecules this would be the dipoledipole 
energy varying as R P 3 .  At the distances characteristic of Van der Waals complexes, 
higher molecular multipoles are required and convergence problems are found. Brobjer 
and Murrell(l981) observed that the logarithm of the 2"-pole moment of a molecule 
grows approximately linearly with n. A multi-site expansion gives a better description 
of the molecular electrostatic potential at shorter range (Stone 1981) and is also 
compatible with familiar valence concepts. A multipole moment describes a departure 
from spherical symmetry, and thus an atomic multipole describes the distortion of an 
atom from local spherical symmetry when that atom forms part of a molecule. Features 
such as lone pairs and bonding pairs which are revealed by density difference 
(molecule-X atoms) maps (Steiner 1976) are thus represented by atomic multipoles. An 
anisotropic bonding density such as that of the .n orbitals in C,H, is represented by a 
bond quadrupole. It is clear that a single-site expansion is a relatively clumsy way of 
describing local distortions of atoms on the periphery of a molecule and will require 
higher orders of spherical harmonic than a distributed, multi-site expansion (Stone 
1981). 

Other workers have used sets of point charges to model the electrostatic potential 
around a molecule. Brobjer and Murrell(1981,1982) fit the values and positions of the 
charges to experimental total multipole moments. In order to mimic, e.g., the three non- 
bonding pairs on F in HF  or the lone pairs on 0 in H,O, Kollman (1 977 a) places off- 
axis charges at positions determined by the assumed hybridization and the Van der 
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Electrostatic predictions of shapes of Van der Waals molecules 109 

Waals radii. Off-axis charges predict, for example, the correct bent geometry of (HF),, 
whereas using axial charges it is necessary to fit to molecular multipoles up to 
hexadecapole to obtain a bent equilibrium geometry (Brobjer and Murrell 1982). Our 
model automatically includes the non-bonding density through the dipole and 
quadrupole on F. The multipoles are calculated directly from an ab initio wavefunction, 
thus avoiding the arbitrariness inherent in a fitted point-charge model. However, there 
is considerable scope for choice in the means of describing the intermolecular 
electrostatic potential; for example one could select a variety of sites or include local 
octupoles; but we believe that the approach through distributed atomic multipoles 
gives a reliable, convenient and transferable representation at distances appropriate to 
the equilibrium separation in a Van der Waals molecule (Stone and Alderton 1985). 

The second important ingredient of the model is the way it treats the shapes of the 
monomer molecules. Short-range repulsive forces define the size and shape of the 
monomers. In the present model, hard spheres are placed on the atomic centres to 
simulate the repulsion. Pauling's (1960) values of the Van der Waals radii o(X) are 
used for heavy atoms. CH, and CH, groups are treated as spheres of radius 2 R .  
Protons attached to heavy atoms are assumed to lie within the hard sphere of their 
bonded neighbour. Thus the distance R(X . . . H-Y) in hydrogen-bonded complexes is 
approximated by assuming that the spheres X and Y are in contact. This is often 
accurate to within 0.1 A (Buckingham and Fowler 1985). Use of hard-sphere radii is of 
course a crude approximation, and may lead to difficulties for non-hydrogen-bonded 
complexes. Other representations of the repulsion could be used; for example, it would 
be possible to parameterize the repulsion using atom-atom potentials fitted from 
crystallographic data. 

The equilibrium structure of a complex A. . .B  is predicted by a constrained 
minimization of the electrostatic interaction energy of the two assemblies of point 
multipoles, subject to the condition that no atoms approach closer than the sum of their 
hard-sphere radii. The total energy is a sum of pair terms: 

u=c uab 
osA bcB 

where (in atomic units) 

Uob = q"qb/R -R,(,LL; 4" - p;qb)/R3 + (3R,R, - R26,,)(qa8$ + qb@& - 3,@$)/3R5 

R is the vector from site a in A to site bin B, q, p,d are site charge, dipole and quadrupole 
moments, respectively, and 

R 2 a(a) + ~ ( b )  

3. Results and discussion 
In spite of its simplicity, this model is successful in predicting the shapes of Van der 

Walls complexes. Buckingham and Fowler (1983, 1985) report angular geometries of 
over 50 complexes. In 29 cases where an experimental structure is known, the 
predictions are qualitatively, and often quantitatively, correct. Thus the model predicts 
that HF . .  . HF is bent whereas OC..  . HF is linear. (See the 1985 paper for a list of 
references to the experimental structures.) Hydrogen halides and hydrogen cyanide 
attach in C,,-fashion to NH, and PH,, i.e. H,N .. . H-X for HF, HC1, HCN. The model 
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110 A. D. Buckingham et al. 

distinguishes correctly between alternative hydrogen-bonded structures, e.g. finding 
that H F  ... HC1 is preferred to HCl ... HF, 

H 
C 

C 
H 

Ill.. . HX to HC=CH.. . XH, 

and OC ... HX to CO.. . HX. 
The bond angles for low-symmetry complexes are often in quantitative agreement 

with experiment. Two cases of striking agreement are H,CO . . . HF (predicted 
COF = 1 lo"; experimental value 109.5" (Baiocchi and Klemperer 1983)), and 
H,S . . . HF (HF predicted to make an angle of 80" with the H,S plane; experimental 
value 89" (Viswanathan and Dyke 1982)). 

It is important to note that pure dipole-dipole interaction favours linear HF . . . HF 
and the C,, structures i s .  . . HF and iX = 0. . . HF, for example. Although the 
dipole4ipole term is the longest-range term, others are significant in the long-range 
expansion when applied at typical Van der Waals separations, and these are implicitly 
included by a distributed multipole model. Predicted geometries are the result of an 
interplay of the electrostatics and molecular shape. At very long range a T-shaped 
dimer of CO, is favoured by quadrupole-quadrupole interactions, but the elongated 
shape of the molecules favours a skew-parallel shape where opposite atomic charges 
approach as closely as allowed by the repulsive forces. There is some experimental 
evidence that the parallel structure is correct (Barton et al. 1979) but this is a subject of 
debate (Lobue et al. 1984). 

An empirical rule has been proposed by Legon and Millen (1982) to rationalize the 
geometries of hydrogen-bonded complexes. It states that the geometry of a gas-phase 
dimer B...HX can be obtained from the location of non-bonding and a bonding 
electron pairs on B by assuming that the axis of HX coincides with the axis of a non- 
bonding pair on B. If B has no non-bonding pairs but has n-bonding pairs, the axis of 
HX intersects the a-bond and is perpendicular to the nodal plane of the 7c-orbital. In 
other words the proton acts as a probe for lone pairs, or, in their absence, for a-bonds in 
the proton acceptor. The rule gives results in qualitative agreement with experiment 
and with our model. In high-symmetry cases agreement is complete, e.g. HCN . . . HCN, 
H,N . . . HF, where the hydrogen bond is linear. In lower-symmetry examples, e.g. 
H,CO . . . HF, HF . . . HF, the hydrogen bond is not exactly linear, the hydrogen-halide 
axis lying at a few degrees to the line of heavy atoms and the direction of attack of HX is 
not quite along the direction of the lone pairs expected from simple hybridization 
arguments. Our model predicts such deviations, but the Legon-Millen rule would 
require refinement, perhaps along the lines of valence-shell-electron-pair repulsion 
theory. Del Bene's 'Generalized hybridization model' (1973, 1975 a, b) permits small 
devitations for linearity of hydrogen bonds as a result of long-range dipole-dipole 
interactions. 

Although at first sight the Legon-Millen rule is a 'chemical' rationalization, and not 
connected with electrostatics, it can be interpreted as a qualitative electrostatic model. 
The rule implies that the proton in HX seeks out electron-rich regions of the charge 
density of B; as noted above, these are described by the distributed multipoles, hence 
the qualitative agreement of the two approaches. 

This comparison shows that the success of the simple DMA + hard-sphere model 
depends on having a satisfactory description of the overall charge density, rather than 
highly accurate values of the total molecular multipoles, and explains why SCF 
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Electrostatic predictions of shapes of Van der Wads molecules 111 

wavefunctions are adequate. One case where the SCF multipoles might be expected to 
be unreliable is the CO molecule. At the Hartree-Fock limit the total dipole of CO has 
the (incorrect) sense C’O- and correlation effects must be included to give the 
observed C-0’ direction. Even so, SCF distributed multipoles correctly predict that 
hydrogen halides and cyanide coordinate to the carbon (OC . . . HX) rather than to the 
oxygen (CO . . . HX) (Buckingham and Fowler 1985). Inclusion of correlation by 
Marller-Plesset perturbation theory increases the energy difference in favour of C 
coordination. Similarly, the complex of CO and BF, is correctly predicted to be C,,  
OC..  . BF, at both SCF and correlated levels. For an ab initio comparison of the 
OC. .. HF and CO ... HF structures, see Curtiss et al. (1985). 

Although the model is successful in predicting the geometry of hydrogen-bonded 
and some non-hydrogen-bonded complexes (e.g. the halogen dimers), it has limitations 
for some ‘anti-hydrogen-bonded’ structures (Baiocchi et al. 1983). The basic model 
predicts bent hydrogen-bonded structures for FH . . . FCI and FH . , . C1, when the 
F.. . C1 distance is fixed at 3.15 A, the sum of the Van der Waals radii. But from 
experiment (Novick et al. 1976, Baiocchi et al. 1982) these dimers are known to adopt 
the ‘anti-hydrogen-bonded’ structures HF . . . ClF and HF . . . C1, with much shorter 
F . . . C1 distances, e.g. 2.76 A in the ClF complex. Morokuma-analysis of SCF energies 
shows that the binding of the anti-hydrogen-bonded structures is still predominantly 
electrostatic (Umeyama and Morokuma 1977, Rendell et al. 1985) and that the 
electrostatic interaction is responsible for the greater stability of the anti-hydrogen- 
bonded structure. The assumption of hard spheres needs modification in this case, to 
allow closer approach of F and C1. A study of complexes for which the basic model may 
be inadequate is in the press (Hurst et al. 1986). 

As described so far, the model excludes the mutual distortion of the interacting 
molecules. The induction energy is usually not important for prediction of geometries 
of hydrogen-bonded complexes, but induction is the major source of the change of 
dipole moment on complex formation. Unlike electrostatic energy, induction energy is 
not pairwise additive and if included in a model of the hydrogen bond would allow non- 
additivity effects to be studied. Hydrogen bonding is a cooperative phenomenon; 
formation of one hydrogen bond polarizes the monomers in such a way as to make the , 

formation of a second more favourable in some approach geometries. Kollman (1977 b) 
has noted that non-additivity in (H,O), clusters is explicable in terms of changes 
induced in the electrostatic potential by complexation. 

4. A model for dipole moments of complexes 
The dipole moment of an interacting pair of molecules may differ from the vector 

sum of the permanent dipoles of the monomers for three distinct reasons: (i) dipoles are 
induced in each molecule by the non-uniform electric field of the neighbour; (ii) the 
charge distribution may be distorted by dispersion forces; (iii) the electron distribution 
and nuclear configuration may be distorted by short-r3nge forces. Large enhancements 
of dipole on formation of Van der Waals complexes have been measured, e.g. 
A p  = 0.60 D for H,P . . . HCN (Legon and Willoughby 1984), 0.60 D for CO, . . . HF 
(Baiocchi et al. 1981), and 049 D for OC . . . BF, (Janda et al. 1978, Altman et al. 1983 a). 

As the dimer geometries are successfully predicted by an electrostatic model, we 
expect that the first, inductive effect will largely explain the dipoles. A model to test this 
hypothesis is described in the present section. 

The electric field around a molecule is well represented by distributed multipoles; 
for similar reasons the response of a molecule to a non-uniform field should be 
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112 A .  D. Buckingham et al. 

described by a distributed polarizability. Stone (1985) has developed an ab initio 
method for partitioning molecular polarizability into atomic contributions using an 
approach similar to his DMA (1981). We shall not describe the details of distributed 
polarizability analysis (DPA) here, but note that for each atom of a molecule in an 
external field there is a set of induced point multipoles related by a set of coefficients to 
the potential, field, field gradient.. . at all atomic sites. These response coefficients can 
be calculated by coupled-Hartree-Fock theory (Stone 1985) and can be combined to 
recover the molecular dipole polarizability and higher polarizabilities. 

For a linear molecule lying along the field direction, an applied field induces a 
dipole through changes in the charge and dipole on each atom i. These may be 
expanded in terms of the electrostatic potential r! field F ,  and field-gradient F,, at all 
atoms j :  

A @ )  =C { -,&) vj) + & j )  ( A  1 0 . j )  FW.. .} 00,oo 0 0 , l O ~ z  + ~ ~ O O , Z O  22 

i 

Table 1 gives the two site DPA models of five linear molecules calculated using large 
basis sets (Stone 1985). 

Table 1. Distributed Polarizability Analysis for five linear molecules. A two-site model is used for 
each molecule (for CO, all the polarizability is placed on the 0 atoms). Each row represents the 
expansion of the induced atomic multipole in terms of the external potential V; field and field 
gradient at sites in the molecule. By charge conservation the coefficient of v') is minus that of 
vl), and Aq(*)= -Aq('). The quantities are in atomic units. 

a,o,rdiJ)  

j =  1 2 1 2 1 2 
Molecule Sites Expansion l'=O 0 1 1 2 2 

N, 1 E N(z = - 1.034) 
2=N(z= 1.034) 

CO 1 =C(Z= - 1'218) 
2 O(Z = 0.914) 

HCl 1 Cl(z = 0.0) 
2 E H(z = 2.409) 

HF  1 E H(z = 1.732) 
2 = F(z = 0.0) 

CO, 1 E O(Z = - 2.196) 
2=0(~=2.196) 

1.694 
- 0.366 

1.402 
- 0.202 
- 1,402 
-0.436 

1.070 
-0914 
- 1.070 
-0187 

0.734 
0.150 

- 0.734 
- 0.336 

-0.613 
-0113 

- 1.402 -0.202 -0.436 -0.863 0.611 
0.202 3.422 -0.076 -7.351 -0.658 
1.402 0-202 0.436 0863 -0611 
0.436 -0.076 2.012 0.695 1.914 

-1.070 -0.914 -0.187 0.698 1.166 
0.914 6.014 -0.351 -5.941 -1.749 
1.070 0.914 0.187 -0.698 -1.166 
0.187 -0.351 1.076 0.668 0.505 

-0.734 0.150 0.336 -0.375 -0.202 
-0.150 0.378 -0.049 0.152 0.173 

0.734 -0150 -0.336 0.375 0.202 
-0.336 -0.049 1.542 -0.325 -1.329 

-0.613 -0.113 -0113 -0.346 0.346 
0113 5.159 -0.286 1'208 0485 
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Electrostatic predictions of shapes of Van der Waals molecules 113 

A model of the interaction dipole is constructed by using the DMA multipoles and 
DPA polarizabilities to calculate the dipole induced in each monomer by the proximity 
of the other. Using the DMA (Buckingham and Fowler 1985) and experimental 
geometries of the complexes, we compare the predictions of the DMA/DPA model with 
experiment for four hydrogen-bonded dimers in table 2. The good agreement shows 
that, for these complexes at least, the interaction dipole is predominantly inductive in 
origin. Previous discussions (Altman et al. 1982b, 1983) of the 0.14D difference 
between Ap for N, . . . HCl and OC . . . HCl neglected the dipole induced in HC1 by its 
less polar partner; from table 2 it is seen that ApHa is 40 per cent of the interaction 
dipole for OC . . . HCl. It is the dipoles induced in N, and CO by the nearby HCI that 
scale approximately as the polarizabilities a(N,): a(CO), rather than the total 
interaction dipoles. Table 2 also gives predicted dipole moments for the N, . . . HF and 
OC . . . HF dimers. 

Table 2. Predictions of the DMA/DPA model for induced dipole moments of linear Van der 
Waals complexes. ApB is the dipole induced in monomer B. The experimental induced 
dipole is deduced from the second-order Stark effect after making allowances for the zero- 
point bending motion.? All dipoles are in debye. 

Predictions Experimental 
B . . . HX ApB +ApHX=ApB .. .HX ApB . . .HX 

____ 

N,...HCl 0.210 0.055 0.265 0.25t 
N,.. .HF 0.371 0.043 0.412 - 

OC ... HCI 0.245 0.136 0.381 0.39$ 
OC ... HF 0.454 0096 0.550 - 

OCO ... HCl 0.320 0.121 0.441 0.45$ 
OCO ... HF 0.548 0.069 0.617 0.607 

t Altman et al. (1983 a). 
$ Altman et al. (1983 b). 
$ Altman et al. (1982 a). 
TBaiocchi et al. (1981). 
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